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ABSTRACT
We conducted a randomized, placebo-controlled trial to assess the safety and biological age (BA) effects of various therapeutic 
plasma exchange (TPE) regimens in healthy adults over 50. Participants received bi-weekly TPE with or without intravenous 
immunoglobulin (IVIG), monthly TPE, or placebo. Randomization was based on entry date, and treatments were blinded to 
maintain objectivity. Primary objectives were to assess long-term TPE safety and changes in biological clocks. Secondary goals 
included identifying optimal regimens. Exploratory analyses profiled baseline clinical features and longitudinal changes across 
the epigenome, proteome, metabolome, glycome, immune cytokines, iAge, and immune cell composition. We demonstrate in 42 
individuals randomized to various treatment arms or placebo that long-term TPE was found to be safe, with only two adverse 
events requiring discontinuation and one related to IVIG. TPE significantly improved biological age markers, with 15 epigenetic 
clocks showing rejuvenation compared to placebo (FDR < 0.05). Biweekly TPE combined with intravenous immunoglobulin 
(TPE-IVIG) proved most effective, inducing coordinated cellular and molecular responses, reversing age-related immune de-
cline, and modulating proteins linked to chronic inflammation. Integrative analysis identified baseline biomarkers predictive 
of positive outcomes, suggesting TPE-IVIG is particularly beneficial for individuals with poorer initial health status. This is the 
first multi-omics study to examine various TPE modalities to slow epigenetic biologic clocks, which demonstrate biological age 
rejuvenation and the molecular features associated with this rejuvenation.
Trial Registration: Registered trial NCT06534450 on clini​caltr​ials.​gov under the purview of the Diagnostic Investigational 
Review Board.
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1   |   Introduction

Every country in the world is experiencing sustained growth in 
the proportion of older adults in its population. Current estimates 
predict that by 2030, almost a sixth of the world's population will 
be aged 60 years or older (Ageing and Health, n.d.). As age is the 
single most significant risk factor for chronic disease, these pop-
ulation dynamics pose a huge challenge for healthcare systems. 
However, a person's true age is much more than the chronolog-
ical number of years they have lived. Factors like stress, diet, 
sleep, genetics, and infections influence the rate at which our 
bodies age, and biologically older individuals are more likely to 
develop diseases and experience premature mortality (Sigmond 
and Vellai  2023; Sayed et  al.  2021; Meier et  al.  2024; Waziry 
et al. 2019; Goeminne et al. 2024; Belsky et al. 2022; Furman 
et  al.  2019). In recent years, we have witnessed an increasing 
number of studies focused on estimating a person's biological 
age (BA) at the molecular level based on changes to epigenom-
ics (Bell et  al.  2019), proteomics (Sayed et  al.  2021; Johnson 
et al. 2020), metabolomics (Hertel et al. 2016), and other “omics” 
measurements (Rutledge et  al.  2022; Alpert et  al.  2019). The 
most accurate and well-established methods utilize changes in 
DNA methylation (DNAm) patterns that occur with age, fol-
lowed by machine learning techniques to construct biological 
age (BA) predictors. These BA “epigenetic clocks” are often pre-
dictive of diseases and mortality (Rutledge et al. 2022), and sen-
sitive to various lifestyle interventions. For instance, moderate 
weight loss (< 5%) decreases epigenetic age by 1.1 years (Horvath 
clock), and individuals with more than 5% in weight loss show 
a decrease of 7.2 BA months in an 18-months period (Yaskolka 
Meir et  al.  2021). Nutrition also has a significant impact on 
methylation clocks. For example, methylation-supportive diets 
combined with lifestyle changes can reduce biological age by 
4.6 years in females (Fitzgerald et  al.  2023) and 1.96 years in 
males (Fitzgerald et  al.  2021). Healthy dietary habits main-
tained for up to 2 years can reduce age-adjusted biological age 
by 0.66 years (GrimAge) (Fiorito et al. 2021). The effects of diet 
and nutritional supplementation seem to depend on the study 
population. For instance, in overweight African Americans, 
vitamin D3 supplementation can decrease epigenetic age by 
approximately 1.9 years (Chen et  al.  2019) whereas in vitamin 
D-deficient subjects, it decreases epigenetic age by only 1.3 years 
(Vetter et  al.  2020; Vetter et  al.  2022). Interestingly, a 60-day 
relaxation practice scheme can also significantly impact epi-
genetic age with a rejuvenation of 4.67 years in healthy subjects 
(Pavanello et  al.  2019). Pharmacological interventions have 
highlighted the potential of small molecules to reduce BA. For 
instance, a reduction in epigenetic age acceleration by 2.77 years 
(Horvath clock) and 3.43 years (Hannum clock) was observed in 
patients with diabetes mellitus undergoing metformin treatment 
(Li et al. 2022). Other pharmacological agents, such as dasatinib 
and quercetin (NCT04946383), or rapamycin (NCT04608448), 
are currently undergoing clinical trials targeting BA (Moqri 
et  al.  2023). While several interventions have been associated 
with aging-related biomarkers, their translation into consistent 
clinical benefit remains inconclusive, highlighting the need to 
distinguish between biomarker effects and validated clinical 
outcomes.

Methods to manipulate blood composition have proven prom-
ising in decreasing BA clocks and improving health status. For 

instance, intramuscular injection of human umbilical cord 
plasma concentrate into elderly human individuals has shown 
that youth factors substantially improve clinical biomarkers and 
reduce biological age by 0.82 years (using GrimAge) (Clement 
et  al.  2022). Several studies have shown that therapeutic 
plasma exchange (TPE), first studied in animals in 1914 (Abel 
et al. 1914), can also significantly improve the outcomes of vari-
ous medical indications. TPE, first used to treat macroglobulin-
emia in 1963 (Solomon and Fahey 1963) has recently been given 
Food and Drug Administration Emergency Use Authorization 
for the treatment of COVID-19 (FDA,  n.d.). Strikingly, up to 
65% of patients with long COVID-19 have shown improved pe-
ripheral neuropathy, fatigue, stamina, and brain fog after TPE 
treatment Kiprov, (2023). Interestingly, in cases of yellow phos-
phorus poisoning, TPE showed strong beneficial effects such as 
removal of the poison and improved liver function with asso-
ciated changes in secreted circulating proteins and metabolites 
(Radhakrishnan et al. 2023).

In the context of aging, we recently conducted a study of eight 
individuals, demonstrating a remodeling of the immune system 
in the blood of older individuals and a decrease in proteins asso-
ciated with aging after over five repeated TPE treatments (Kim 
et al. 2022). Expanding on our previous findings, this study ap-
plies a multi-omics systems biology approach to longitudinally 
profile 30 individuals who underwent three therapeutic plasma 
exchange (TPE) modalities (10 individuals each): monthly TPE, 
biweekly TPE, and biweekly TPE combined with intravenous 
immunoglobulin (IVIG). We utilized BA deceleration as the pri-
mary endpoint by measuring 35 independent epigenetic clocks 
and estimated the BA rejuvenation effects caused by each in-
tervention. Integrative analysis encompassing lipidomics, pro-
teomics, metabolomics, cytomics, iAge (Sayed et al. 2021), the 
immune cytokine surrogate percentiles of iAge, and glycomics 
identified biomarkers in each ‘omics’ that are correlated with the 
responses to TPE and baseline clinical and ‘omics’ features that 
are predictive of the rejuvenation response to TPE treatment.

2   |   Results

This clinical trial, categorized as a “Not Applicable” phase, in-
volves healthy participants and utilizes TPE as an intervention 
(e.g., a device or behavioral approach) that was not intended for 
the diagnosis or treatment of any disease. Of the healthy indi-
viduals that expressed interest in this clinical trial to understand 
long-term TPE safety and effect on epigenetic biological clocks, 
we enrolled 44 people under four different groupings (Figure 1). 
All the participants that began the trial were randomized and 
started the intervention (Figure 1a,b) of which 42 completed the 
study (Figure 1c). Table 1 presents sex and age characteristics for 
the four groups, with additional baseline measurements given in 
Table 2 and Supplemental Table S1.

2.1   |   Compositional Changes of Epigenetic 
Biological Aging After TPE Treatment

Comparison of baseline measurements indicates that most 
of the biologic clocks significantly differ between the groups 
(FDR < 0.05 in Supplemental Table  S2) and other baseline 
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characteristics are similar between groups (except for ALDOA 
and VCAM1 in TPE + IVIG (B) vs. TPE (M)). No biologic clocks 
had a significant change from baseline to time point 2 or base-
line to time point 3 with FDR correction; however, due to the low 
sample size and expected higher variance in human biological 

samples, we used nominal p values to identify increasing and 
decreasing trends in eight epigenetic biological clocks within 
groups between time point 2 and baseline and time point 3 and 
baseline (nominal p-value < 0.05 in Figure 2a and Table 3). There 
were no clinically meaningful changes (e.g., functional, cogni-
tive, or symptomatic) observed or assessed in this short-term 
study. Significant differences between active treatment groups 
and Sham were identified in ten biologic clocks in TPE + IVIG 
(B), five biologic clocks in TPE (B), and five biologic clocks in 
TPE (M) (FDR < 0.05 in Table 4; corrected for 36 biologic clocks). 
Due to most biologic clocks differing at baseline, we confirmed 
that the changes were identified in time point 2 from baseline in 
each group were not due to significant intra-individual variabil-
ity for each clock and group (Table 5).

2.2   |   TPE Safety

Long term use of TPE was determined to be safe based on hav-
ing adverse reactions to TPE in 0.45% of individuals (2 of 44) and 

FIGURE 1    |    TPE study design. (a) Consort diagram for the trial. (b) Schematic representation of TPE treatment. In TPE, blood cells and plasma 
are separated. Plasma is then filtered and replaced with IVIG or fluids, and together with blood cells are returned to the patient's circulation. (c) Two 
temporal regimes were tested, with three blood samples taken per session. (d) Samples were used to perform multi-omics profiling. Epigenomics 
data were used to calculate the differences in BA induced by the treatments. Correlation analyses were performed, comparing baseline and changing 
levels of the omics features and BA differences.

TABLE 1    |    Age and sex characteristics of each cohort.

Weekly 
TPE + IVIG

Weekly 
TPE Sham

Monthly 
TPE

Average age 66.8 64.8 67.9 61.8

# of female 5 6 3 5

# of male 5 4 8 5

Average age 
female

66.5 65.1 77.0 61.8

Average age 
male

67.1 64.2 64.5 61.8
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TABLE 2    |    Baseline epigenetic biologic clock acceleration of each cohort.

Clock Bi-weekly TPE + IVIG Bi-weekly TPE Sham Monthly TPE

AdaptAge −3.19 (6.69) 2.44 (8.71) −2.21 (14.39) 2.18 (5.59)

Blood −2.04 (7.3) −1.46 (7.76) −2.37 (14.76) 5.16 (10.12)

Brain −1.42 (11.9) −2.85 (10.46) −3.94 (17.49) 7.91 (15.53)

cAge 1.12 (2.84) 0.38 (3.77) −2.02 (4.58) 0.38 (3.72)

CausAge −0.15 (3.48) −0.61 (4.53) 1.76 (10.61) −0.09 (4.73)

DamAge 1.02 (7.03) −1.01 (6.28) 3.6 (10.2) −0.49 (4.18)

DNAmFitAge 0.4 (2.45) 0.4 (3.14) −0.17 (4.33) 0.16 (4.44)

DNAmGait −0.01 (0.07) −0.04 (0.1) 0.08 (0.19) 0.01 (0.09)

DNAmGrip 0.68 (7.13) −0.34 (6.79) 2.63 (6.18) 2.54 (7.59)

DNAmVO2max 0.22 (1.91) −0.43 (1.9) 0.61 (2.39) 0.19 (1.06)

Hannum 0.86 (3.59) −0.78 (4.41) −0.77 (3.48) 1.79 (3.89)

Heart −0.94 (7.84) −0.05 (13.23) −1.23 (12.22) 1.68 (7.14)

Hormone 0.28 (3.75) −2.83 (5.19) −1.01 (4.41) 1.16 (6.56)

Horvath 1.18 (6.05) −0.02 (8.22) 0.56 (7.9) −0.27 (3.96)

Immune −1.24 (17.08) 1.66 (17.58) 12.28 (28.13) 1.28 (7.1)

Intrinsic Capacity −0.27 (1.68) 0.81 (1.52) −0.08 (1.74) −0.07 (2.38)

Inflammation 1.26 (9.53) −1.23 (9.32) −2.45 (4.55) 5.87 (10.08)

IntrinClock 1.56 (2.77) 0.23 (3.43) −1.14 (6.67) −0.42 (4.8)

Kidney −0.5 (8.61) −1.62 (11.82) 1.19 (5.74) 4.87 (7.79)

Liver −1.08 (9.01) 0.05 (6.72) −1.17 (11.04) 2.63 (10.96)

Lung 0.48 (9.27) 2.37 (8.69) 3.11 (9.53) −3.01 (9.28)

Metabolic −0.08 (8.18) −2.64 (8.8) −6.5 (11.56) 7.52 (13.31)

MusculoSkeletal −2.24 (10.61) −5.71 (12.56) 2.59 (10.85) 5.61 (7.3)

OMICmAge 0.71 (2.94) −1.03 (3.26) 2.42 (3.98) 0.68 (4.04)

PCDNAmTL 0.03 (0.14) 0.02 (0.16) −0.04 (0.13) −0.04 (0.15)

PCGrimAge −0.01 (2.13) −0.15 (3.3) 0.55 (1.99) 0.67 (1.83)

PCHannum 0.4 (5.36) −0.59 (5.01) −1.1 (4.94) 1.24 (3.33)

PCHorvath1 0.36 (4.85) −0.09 (5.49) −0.93 (6.08) 0.9 (3.9)

PCHorvath2 0.21 (4.75) −0.63 (5.58) −1.11 (6.89) 0.87 (3.12)

PCPhenoAge 0.45 (5.32) −1.13 (5.94) 0.46 (5.8) 2.66 (5.38)

PhenoAge −0.48 (4.62) 2.15 (4.34) −1.03 (5.95) 0.75 (4.3)

Retroclock 0.2 (3.34) 0.01 (2.61) −0.96 (5.44) −0.24 (4.44)

Stochastic.Horvath 2.45 (4.46) 0.47 (7.71) −2.91 (8.45) −1.17 (5.4)

Stochastic.PhenoAge 1.11 (5.77) −0.5 (4.64) −0.68 (7.23) −1.23 (3.01)

Stochastic.Zhang 2.45 (4.5) 0.14 (4.15) −0.51 (5.8) 0.34 (4.73)

SystemsAge −0.54 (8.25) −0.57 (12.84) −1.25 (11.23) 1.79 (8.43)
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having a single mild allergic reaction to albumin (1 in 240 TPE 
procedures).

2.3   |   TPE Induces Biological Age Rejuvenation 
and IVIG Supplementation Enhances the Effect

Subjects underwent therapeutic plasma exchange in two 
temporal regimes. Eleven individuals were subjected to two 
sessions during the first week, followed by 3 weeks with no ses-
sions for 3 months (TPE biweekly regime), and 11 individuals 

received one session per month 6 times (TPE monthly regime) 
(Figure  1c). Blood samples were taken in both regimes before 
sessions 1 (baseline), 4, and 6. In addition to TPE, we evaluated 
in 10 individuals the effects of biweekly intravenous injections of 
immunoglobulin (IVIG) supplementation, which has previously 
been shown to enhance the immune system's ability to fight 
infections (Megha and Mohanan 2021; Katragkou et al. 2018). 
The control group received sham plasma exchange in either the 
biweekly or monthly regime, which mimicked the look and feel 
of TPE but without separation, filtration, or fluid replacement 
(see Methods).

FIGURE 2    |    Therapeutic plasma exchange induces a coordinated biological age deceleration. (a) Biological age estimations using 36 epigene-
tic clocks. In all groups, we calculated the difference between the age-adjusted biological age at time points 2 and 3 compared to time point 1 (age 
acceleration difference). No differences within groups (FDR corrected for 36 biologic clocks) were significant when p-values were adjusted for the 
epigenetic clock comparisons (asterisk indicate nominal p value < 0.05). TPE + IVIG biweekly treatments has the most significant differences with 
Sham (Wilcoxon exact FDR < 0.05 after correction for 36 biologic clocks for each group) than other treatments (Table 4). (b) Average age acceleration 
difference across epigenetic clocks. Error bars indicate the 95% confidence intervals of the mean. FDR at the top and bottom indicate the significance 
of the difference between the treatments and sham using a Wilcoxon exact test. (c) Average age acceleration difference for groups of epigenetic clocks. 
Asterisks indicate age acceleration differences significantly different from zero (Wilcoxon exact FDR < 0.05).
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TABLE 3    |    Epigenetic biologic clock changes after TPE at time point 2.

Clock
Bi-weekly 

TPE + IVIG

Within 
group p 
value*,+

Bi-weekly 
TPE

Within 
group p 
value* Sham

Within 
group p 
value*

Monthly 
TPE

Within 
group p 
value*,+

AdaptAge −1.35 (9.68) 0.77 2.31 (5.95) 0.69 2.87 (17.67) 0.38 0.23 (2.77) 0.77

Blood −3.94 (8.55) 0.19 −0.12 (2.73) 0.81 3.73 (20.09) 0.38 −3.07 (4.27) 0.05

Brain −6.87 (10.75) 0.05 −0.29 (6.39) 0.69 4.44 (26.11) 0.92 −5.42 (6.66) 0.04

cAge −1.27 (5.03) 1.00 −1.42 (1.65) 0.08 1.15 (5.59) 0.56 −1.07 (2.55) 0.43

CausAge −1.91 (5.27) 0.43 −0.85 (1.52) 0.16 −2.84 (15.33) 1.00 0.83 (3.43) 0.38

DamAge −2.2 (4.18) 0.13 −2.38 (5.06) 0.22 −6.21 (17.27) 0.28 0.8 (4.65) 0.16

DNAmFitAge −1.58 (4.17) 0.49 −1.05 (2.46) 0.58 0.41 (1.99) 0.63 −0.07 (1.47) 0.85

DNAmGait 0.02 (0.07) 0.38 0.01 (0.07) 0.81 −0.08 (0.23) 0.70 0.01 (0.04) 1.00

DNAmGrip −0.72 (5.41) 0.13 −1.91 (4.33) 0.22 −0.75 (5.33) 0.70 −3.99 (5.66) 0.00 
(0.07)

DNAmVO2max −0.39 (1.16) 0.11 0.05 (2.09) 0.94 −0.61 (2.94) 0.77 −0.81 (1.18) 0.06

Hannum −1.72 (5.04) 0.38 −2.11 (2.84) 0.11 0.11 (3.35) 0.92 −2.18 (3.77) 0.16

Heart −3.14 (6.66) 0.28 1.29 (6.7) 0.94 3.8 (12.14) 0.43 −1.31 (4.97) 0.38

Hormone −1.95 (5.85) 0.43 0.97 (2.78) 0.47 0.09 (1.99) 1.00 0.08 (3.35) 0.85

Horvath −0.39 (3.26) 0.92 −1.28 (4.38) 0.30 −0.32 (6.16) 0.70 −0.92 (3.58) 0.70

Immune −9.77 (10.33) 0.01 
(0.21)

−3.1 (8.19) 0.30 −13.13 
(37.03)

0.23 −5.39 (11.42) 0.16

Intrinsic 
Capacity

−0.70 (1.69) 0.03 
(0.90)

0.75 (1.03) 0.22 −0.61 (1.73) 0.70 −1.29 (3.63) 0.38

Inflamma-tion −7.18 (9.49) 0.19 −2.52 (4.45) 0.22 0.85 (6.62) 0.43 −2.76 (5.31) 0.43

IntrinClock −2.49 (5.91) 0.49 −1.2 (2.4) 0.94 −0.46 (7.29) 0.63 −0.71 (2.48) 0.13

Kidney −6.2 (8.12) 0.04 −1.61 (4.97) 0.47 −2.27 (8.07) 0.56 −4.33 (7.57) 0.04

Liver −4.57 (8.1) 0.11 −0.53 (5.45) 0.94 −3.83 (11.31) 0.56 −2.7 (5.12) 0.16

Lung −1.9 (4.64) 0.38 0.4 (4.83) 0.81 −3.87 (15.91) 1.00 1.55 (3.01) 0.19

Metabolic −6.72 (9.71) 0.03 
(0.90)

−1.06 (8.6) 0.81 5.2 (16.87) 0.56 −3.06 (5.08) 0.13

MusculoSkeletal −2.22 (6.75) 0.43 −0.86 (6.47) 0.47 −1.79 (11.83) 0.92 −3.31 (7.89) 0.28

OMICmAge −1.64 (2.12) 0.04 −0.35 (2.19) 0.94 −2.01 (4.98) 0.19 −1.01 (2.53) 0.19

PCDNAmTL 0.01 (0.07) 0.28 0 (0.05) 0.81 0.04 (0.08) 0.16 0.03 (0.06) 0.13

PCGrimAge −0.9 (1.26) 0.05 −0.32 (1.36) 0.69 −0.01 (1.36) 1.00 −0.8 (1.73) 0.23

PCHannum −1.89 (3.26) 0.05 −0.8 (2.11) 0.38 −0.06 (4.3) 1.00 −1.42 (3.36) 0.05

PCHorvath1 −1.69 (2.94) 0.01 
(0.34)

−1.15 (1.95) 0.30 0.87 (5.01) 0.92 −1.02 (2.67) 0.28

PCHorvath2 −1.45 (3.65) 0.19 −0.54 (2.69) 0.81 1.83 (7.14) 0.85 −1.14 (2.77) 0.16

PCPhenoAge −4.25 (5.86) 0.01 
(0.46)

−1.18 (3.38) 0.47 −1.53 (6.74) 0.63 −2.27 (2.99) 0.04

PhenoAge −2.56 (9.25) 0.56 −3.2 (2.65) 0.08 1.59 (6.18) 0.63 −0.49 (4.9) 1.00

Retroclock −0.85 (4.81) 0.85 −0.7 (1.94) 0.69 1.62 (5.47) 0.23 0.24 (2.71) 1.00

(Continues)

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.70103 by D

obri K
iprov , W

iley O
nline L

ibrary on [27/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 18

We collected epigenetic data from the treated subjects and calcu-
lated DNA methylation age using 36 different epigenetic clocks. 
We adjusted the biological ages for each clock by the chronolog-
ical age and for unknown covariates using the first three princi-
pal components of the control probes (see Methods), resulting in 
a metric of age acceleration. This metric represents the deviation 
of BA from individuals of the same age. To estimate the effects 
on BA induced by TPE, TPE, and IVIG, and Sham, we calculated 
the difference between the age acceleration from time point 1 to 
time points 2 or from time point 1 to time point 3. This age ac-
celeration difference was negative if the interventions reduced bi-
ological age and positive if the interventions increased biological 
age, independently of age (Table 3, Figure 2a). We observed that 
at time point 2, all interventions induced a negative age acceler-
ation difference compared to sham (Wilcoxon exact FDR < 0.05; 
Figure 2b). TPE + IVIG treatment displayed the largest reduction 
in BA, with an average decrease of 2.61 years (FDR = 6.22e-05). In 
the case of TPE, the monthly regime showed a greater decrease 
in biological age than the biweekly regime, with an average BA 
rejuvenation of 1.32 years (FDR = 2.42e-02), suggesting that more 
frequent sessions do not necessarily lead to a greater BA rejuvena-
tion effect. Surprisingly, we observed no significant BA differences 
at time point 3 compared to sham in any group, suggesting poten-
tial compensatory mechanisms that mitigate the anti-aging effects 
after multiple sessions.

Given that epigenetic clocks capture different aspects of 
aging, we asked which type of BA clock had the greatest ef-
fect. To do so, we grouped these clocks into six different 
types, depending on the method and outcome regressed. At 
time point 2, Systems age clocks (Sehgal et al. 2024) showed 
the largest decrease in age-adjusted BA in the TPE + IVIG 
group (4.85 years, Wilcoxon exact versus zero FDR = 2.93e-03 
corrected for six clock groups and two comparisons for each 
TPE treatment group; 36 comparisons) and the monthly TPE 
intervention (2.55 years, FDR = 2.93e-02) but not in the TPE 
biweekly group.

(FDR = 1) (Figure  2c). No biologic clocks in the Sham group 
had any significant change versus zero (FDR = 1). The non-
categorized epigenetic clocks (Epigenetic clocks in Figure  2a) 
also showed significant age acceleration difference in the 
TPE + IVIG (FDR = 3.91e-02) and TPE (FDR = 4.69e-02) inter-
ventions under a biweekly regime. Consistent with the average 

calculations across epigenetic clocks, most clock groups showed 
a reduced BA rejuvenation at time point 3. Given the attenuated 
effect at time point 3, we wondered if it was dependent on the 
effects observed at the previous session (time point 2), which 
could indicate a potential compensatory mechanism. Only bi-
weekly TPE interventions had a significant negative correlation 
(Spearman correlation and nominal permuted Spearman's cor-
relation test) between the age acceleration differences at time 
point 2 from baseline and those between time point 3 and 2 
(p < 0.048). The Spearman correlation in bi-weekly TPE + IVIG 
treatment trends was negative but may be driven by the few 
samples in the analysis and is not significant. The sham group 
showed no such correlation. Overall, these results indicate that 
individuals with TPE had most of the rejuvenation effects be-
tween the first two collection points.

2.4   |   Omics Changes Linked to Rejuvenation in 
TPE + IVIG

To provide a better understanding of the molecular basis of the 
BA rejuvenation observed, we performed multi-omics profiling 
on the same samples, including cytomics, glycomics, lipidomics, 
metabolomics, and proteomics (see Methods). To identify omics 
markers associated with the rejuvenation effects observed in 
time point 2, we calculated the correlations between the age 
acceleration differences induced by each intervention and the 
change in levels of each feature for each omics. We focused on 
features whose correlation was significantly different from zero 
and the sham intervention with an FDR < 0.05 (Supplementary 
Table 3, see Methods).

Overall, we observed that TPE + IVIG induced the most changes 
in omics profiles covering 83 of the 124 features affected by all 
interventions (Figure  3a). Notably, 95% of the cell types mea-
sured in the cytomics changed in proportion in coordination 
with the biological age differences after TPE + IVIG treatment. 
In contrast, we observed minor or no changes in cell types in 
TPE interventions, indicating that IVIG induced major changes 
in cell type composition, some of which could potentially con-
tribute to the rejuvenation effects of BA. For example, we found 
that the BA rejuvenation effects were associated with a higher 
proportion of CD8+ and CD4+ naive T cells, a hallmark of im-
mune aging, and lower levels of NK cells and monocytes. In 

Clock
Bi-weekly 

TPE + IVIG

Within 
group p 
value*,+

Bi-weekly 
TPE

Within 
group p 
value* Sham

Within 
group p 
value*

Monthly 
TPE

Within 
group p 
value*,+

Stochastic.
Horvath

−0.25 (4.33) 0.70 0.1 (4.28) 1.00 2.06 (6.91) 0.49 1.95 (4.22) 0.32

Stochastic.
PhenoAge

0.34 (2.24) 0.85 −1.44 (2.88) 0.16 1.45 (10.34) 0.70 −0.03 (2.56) 0.77

Stochastic.
Zhang

−3.86 (5.14) 0.11 −2.88 (4.02) 0.11 −0.12 (5.25) 0.85 −1.61 (5.05) 0.28

SystemsAge −3.75 (7.66) 0.28 1.22 (6.39) 0.81 3.19 (10.99) 0.49 −0.98 (4.15) 0.43

*Unadjusted Wilcoxon exact test.
+FDR adjust for 36 epigenetic tests shown in parenthesis when less than 1.

TABLE 3    |    (Continued)
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TABLE 4    |    Between-group p value of epigenetic biologic age after treatment.

Clock

Bi-weekly 
TPE + IVIG vs. 
Bi-weekly TPE

Bi-weekly 
TPE + IVIG 

vs. Sham

Bi-weekly 
TPE + IVIG vs. 
Monthly TPE

Bi-weekly 
TPE vs. 
Sham

Bi-weekly 
TPE vs. 

Monthly TPE

Monthly 
TPE vs. 
Sham

AdaptAge 1 (0.38) 0.69 (0) 1 (0.22) 1 (0) 1 (0.38) 0.69 (0)

Blood 0.22 (0) 1 (0.09) 1 (0.46) 1 (0.08) 0 (0) 0.3 (0)

Brain 0.07 (0) 0 (0) 1 (1) 1 (0.77) 0 (0) 0.01 (0)

cAge 0.02 (0) 1 (0.01) 1 (0.46) 0 (0) 1 (0.04) 0.05 (0)

CausAge 1 (0.56) 1 (0.01) 0.05 (0) 1 (0.04) 0.01 (0) 1 (0.81)

DamAge 1 (0.77) 1 (0.62) 0 (0) 1 (0.24) 0 (0) 0 (0)

DNAmFitAge 1 (0.77) 0.3 (0) 1 (0.46) 0.22 (0) 1 (0.04) 1 (0.22)

DNAmGait 1 (0.38) 1 (0.09) 1 (0.22) 1 (0.02) 1 (0.14) 1 (0.22)

DNAmGrip 1 (0.56) 1 (0.62) 0.02 (0) 1 (1) 1 (0.01) 1 (0.01)

DNAmVO2max 1 (0.08) 1 (0.09) 1 (0.05) 1 (0.04) 0.22 (0) 1 (0.03)

Hannum 1 (0) 1 (0.01) 1 (0.14) 0.01 (0) 1 (0.77) 0.05 (0)

Heart 1 (0) 0.05 (0) 1 (0.46) 1 (0.14) 1 (0.08) 1 (0)

Hormone 1 (0) 1 (0.05) 1 (0.05) 1 (0.02) 1 (0.14) 1 (0.81)

Horvath 1 (0.56) 1 (0.14) 1 (0.09) 1 (0.24) 1 (1) 1 (0.33)

Immune 1 (0) 0.02 (0) 0.69 (0) 1 (1) 1 (0.38) 1 (0.22)

Inflammation 1 (0) 0 (0) 1 (0.03) 0.22 (0) 1 (0.77) 0.02 (0)

IntrinClock 1 (0.56) 1 (0.33) 1 (0.01) 1 (0.14) 1 (0.24) 1 (0.62)

IntrinsicCapcity 1 (0.56) 1 (0.01) 1 (0.09) 1 (0.24) 1 (0.02) 0.02 (0)

Kidney 0.22 (0) 0.02 (0) 1 (0.09) 1 (0.24) 1 (0.04) 1 (0.01)

Liver 1 (0) 1 (0.14) 1 (0.81) 1 (0.14) 1 (0.04) 1 (0.81)

Lung 0.62 (0) 1 (0.14) 0 (0) 1 (0.14) 1 (0.77) 0.69 (0)

Metabolic 1 (0.08) 0.01 (0) 1 (0.03) 1 (0.04) 1 (0.56) 0.12 (0)

MusculoSkeletal 1 (0.56) 1 (0.14) 1 (0.33) 1 (0.56) 1 (0.38) 1 (0.09)

OMICmAge 0.22 (0) 1 (0.01) 0.05 (0) 1 (0.02) 1 (0.01) 1 (0.03)

PCDNAmTL 1 (1) 1 (0.81) 1 (0) 1 (0.24) 1 (0) 1 (0.46)

PCGrimAge 1 (0.04) 0.05 (0) 1 (0.33) 1 (0.14) 1 (1) 1 (0.01)

PCHannum 1 (0.04) 0.02 (0) 0.69 (0) 1 (0.14) 1 (0.77) 1 (0)

PCHorvath1 1 (1) 0.12 (0) 0.12 (0) 1 (0.04) 1 (0.04) 1 (0.22)

PCHorvath2 1 (0.38) 1 (0.09) 1 (0.81) 1 (0.04) 1 (1) 1 (0.22)

PCPhenoAge 1 (0.01) 1 (0) 1 (0.03) 1 (0.77) 1 (0.56) 1 (0.14)

PhenoAge 1 (0.08) 0.3 (0) 1 (0.81) 0 (0) 0.01 (0) 1 (0.09)

Retroclock 1 (0.04) 0 (0) 1 (0.33) 0 (0) 0.22 (0) 0 (0)

Stochastic 
Horvath

1 (0.56) 1 (0.05) 0 (0) 1 (0.24) 1 (0.02) 1 (0.81)

Stochastic 
PhenoAge

0 (0) 0.3 (0) 1 (0.14) 1 (0.38) 0.62 (0) 0.69 (0)

Stochastic Zhang 1 (0.77) 0.05 (0) 1 (0.09) 0.02 (0) 1 (0.01) 1 (0.01)

SystemsAge 1 (0.01) 0.05 (0) 1 (0.33) 1 (0.77) 1 (0.04) 1 (0)

Note: FDR corrected p values given with nominal p values in parentheses for Wilcoxon exact test. FDR < 0.5 highlighted in orange.
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addition, TPE intervention that decreases BA is correlated with 
a decrease in CXCL9 percentile, a surrogate of iAge positively 
correlated with a decrease in cardiovascular health (Sayed 
et al. 2021). These results are consistent with previous observa-
tions that CD8+ and CD4+ naive T cells significantly drop with 
age, while NK cells and monocytes (MC in Figure 3a) tend to in-
crease with age (Egorov et al. 2018; Ligotti et al. 2021). Similarly, 
in proteomics, 43 proteins, representing 16.02% of the proteome 
measured in this study, displayed significant correlations with 
the BA changes in TPE + IVIG, compared to around 3% or less 
for the other TPE groups. To provide a better understanding 
of the function of these proteins, we performed gene ontology 
enrichment analysis. Proteins with levels correlated with reju-
venation effects in TPE + IVIG were mostly involved in the acti-
vation of the immune response, T cell proliferation, and cell–cell 
adhesion (Figure 3b). We also analyzed whether these proteins 
were associated with the hallmarks of aging. To do so, we com-
pared these against precalculated sets of genes linked with the 
hallmarks of aging (see Methods). We observed a significant en-
richment of proteins involved in altered chronic inflammation 
(FDR = 3.11e-07), cellular senescence (FDR = 1.90e-02), and loss 
of proteostasis (FDR = 2.71e-03) (Figure 3c).

Given the large cell type composition changes observed, we 
investigated if these were correlated with other omics features 
that were significantly changing (inter-omics correlations) 
(Figure  3a, blue lines for negative correlations and red lines 
for positive correlations). Indeed, among the most robust fea-
tures changing in each omics (Figure 3d), several were strongly 
correlated (Spearman |r| > 0.8) with cell type changes due to 
TPE + IVIG intervention. Variability in changes related to TPE 
intervention among individuals indicate the heterogeneity of 
biological responses within this small cohort. For instance, 
45% (9/20) of the cell type changes linked with rejuvenation in 
TPE + IVIG showed a significant correlation with the level of 
the soluble receptor for interleukin-13 (IL13RA1), a key Th2 cy-
tokine with a major effect in fibrosis. Similarly, changes in the 
levels of glycine (Gly) were correlated with the changes in two 
cell types. Interestingly, glycine has been shown to act on a va-
riety of inflammatory cells like macrophages to reduce the for-
mation of free radicals and inflammatory cytokines throughout 
the modulation of the expression of nuclear factor kappa B (NF-
κB) (Aguayo-Cerón et al. 2023). Interestingly, changes in iAge 
and its surrogates were not correlated with changes in any other 
omics. Overall, these results show that the modulation of cell 
type composition and proteomic changes associated with immu-
nosenescence largely drive the biological age effects induced by 
TPE + IVIG intervention.

2.5   |   Baseline Measurements Correlated With 
Changes in Biological Age Acceleration From 
TPE + IVIG

One important aspect of interventional studies is the ability to 
determine a priori which individuals will respond to treatment. 
In our study, this corresponds to individuals who displayed 
a decreased age acceleration after the TPE interventions. To 

TABLE 5    |    Test of intra-individual variability.

Clock

Levene test for Group 
TPE + IVIG (B), TPE 

(B) and TPE (M)

AdaptAge 0.97

Blood 0.86

Brain 0.98

cAge 0.74

CausAge 0.90

DamAge 0.79

DNAmFitAge 0.65

DNAmGait 0.71

DNAmGrip 0.24

DNAmVO2max 0.98

Hannum 0.21

Heart 0.32

Hormone 0.93

Horvath 0.13

Immune 0.38

Intrinsic Capacity 0.31

Inflammation 0.94

IntrinClock 0.54

Kidney 0.67

Liver 0.68

Lung 0.94

Metabolic 0.85

MusculoSkeletal 0.69

OMICmAge 0.31

PCDNAmTL 0.59

PCGrimAge 0.49

PCHannum 0.77

PCHorvath1 0.38

PCHorvath2 0.58

PCPhenoAge 0.76

PhenoAge 0.58

Retroclock 0.58

Stochastic.Horvath 0.70

Stochastic.PhenoAge 0.63

Stochastic.Zhang 0.60

SystemsAge 0.79
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answer this, we used omics data from individuals at baseline 
(before treatment) and asked whether the magnitude of the re-
juvenation effects correlated with the levels of any clinical or 
omics markers prior to treatment. We evaluated the correlation 
between the age-adjusted age acceleration difference at time 
point 2 and the levels of clinical and omics markers at baseline 
(Tables S1 and S4, Figure 4a). In addition to the omics mark-
ers, we evaluated 57 clinical markers, which are more acces-
sible and practical to measure in a clinical setting. We found 
a significant correlation between 18 clinical markers and the 

age acceleration differences in at least one experimental group 
(permuted t-test of the Fisher's z-transformed Spearman cor-
relation; FDR < 0.05). Baseline iAge and its surrogates were 
not correlated with BA changes from TPE intervention. We 
found that monocyte percentage and platelets show correlation 
with age acceleration difference in TPE + IVIG with the most 
robust correlation with mean corpuscular hemoglobin (MCH) 
and change with TPE bi-weekly treatment (Figure  4b), with 
higher levels being associated with the largest rejuvenation ef-
fects. While individuals in this study were nominally healthy, 

FIGURE 3    |    Multiple ‘omics’ features and cellular senescence proteins track with biological age rejuvenation response to TPE-IVIG. (a) 
Correlations between the rejuvenation effects and changes in levels of omics features. We only display features significantly different from zero and 
sham in the TPE + IVIG group (permuted t-test of the Fisherz adjusted Spearman correlations FDR < 0.05). Lines between the features at the center 
indicate inter-feature correlations between cell composition changes and other omics (with data in at least eight individuals with a Spearman |R| > 0.8 
and a permuted Spearman correlation test with a nominal p-value < 0.05). (b) Gene ontology enrichment analysis of proteins with levels correlated 
with the responses to TPE + IVIG indicate activation of the immune system. (c) Enrichment of hallmarks of aging gene sets among proteins signifi-
cantly associated with the TPE + IVIG response. (d) Features with the most robust positive and negative correlation with the rejuvenation effects in 
TPE + IVIG (with data in at least eight individuals and with FDR against zero < 0.05 for all comparisons with a nominal p value).
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higher platelet levels and lower monocyte percentage levels 
within a healthy range were correlated with improvement in 
BA. These correlated levels indicate that an individual in over-
all poorer health may not benefit more from this treatment 
modality than someone in better health. Similarly, elevated 
levels of MCH and creatinine and lower levels of red blood cell 
distribution width (RDW) and epidermal growth factor (eGFR) 
at baseline are observed in individuals with the largest rejuve-
nation effects in TPE bi-weekly and monthly, respectively. We 
also compared the features that were predictive of the response 
to the interventions in classification models (Supplementary 
Table 5, Figure 4c). We found that baseline levels of 12 (TPE 
biweekly) to 13 (TPE monthly) clinical markers were useful for 
classifying responders (age acceleration difference < 0) from 
non-responders with alkaline phosphatase, bilirubin, calcium, 
glucose, sodium, and globulin contributing to the prediction of 
response to at least two interventions (Figure 4d). Also, classi-
fication of responders to TPE + IVIG was higher (AUC = 0.75) 
than TPE bi-weekly (AUC = 0.7) or monthly (AUC 0.63). 
Overall, this analysis suggests that individuals with poorer 
health may experience the most significant improvements and 
that baseline levels are useful in predicting the biological age 
response to TPE.

3   |   Discussion

In this study, we aimed to assess the safety of long-term TPE 
and the efficacy of treatment on BA. As a secondary objec-
tive, identification of an optimal TPE regime was assessed. 
We acknowledge the limited sample size as a key constraint of 
this study; given the exploratory nature of the trial, findings 

should be interpreted as hypothesis-generating rather than de-
finitive, and warrant validation in larger, adequately powered 
studies. We performed an exploratory analysis of follow-up 
omics (time point 2 and time point 3) to better understand 
TPE treatment effects and baseline clinical and omics data to 
better understand how these baseline levels affect TPE treat-
ment associated with BA changes. Our findings demonstrate 
that multiple TPE treatments with bi-weekly or monthly ses-
sions were safe with few adverse events and that three ses-
sions of TPE treatment are sufficient to reduce biological age 
by 1.32 years and that IVIG supplementation doubles the ef-
fect to 2.61 years. Previous studies have assessed biological 
age upon TPE treatment in humans and animal models using 
clinical markers (Li et  al.  2018), pro-inflammatory markers 
(Kim et al. 2022), and functional tests (Mehdipour et al. 2022; 
Mehdipour et  al.  2021; Mehdipour et  al.  2020). The hetero-
geneity of individual responses observed with TPE treatment 
in this small study should be interpreted with caution and 
validated in larger, more diverse cohorts. However, besides 
two ongoing clinical trials (Clini​calTr​ials.​gov identifiers 
NCT05004220, NCT03353597), this is the first study in hu-
mans to report a decrease in biological age by TPE using well-
validated epigenetic metrics of biological age.

Among the epigenetic clocks we used to quantify biological 
age, we found that Systems age clocks (Sehgal et al. 2024) dis-
played the most sensitive measures to the treatments, with 
biological age of the inflammatory and immune system de-
creasing 7.1 and 9.7 years, respectively, after TPE + IVIG treat-
ment. However, TPE bi-weekly and monthly showed a much 
smaller effect, ranging from 2.5 to 5.3 years. This result was 
consistent with the exploratory analysis that TPE + IVIG, 

FIGURE 4    |    Baseline ‘omics’ and clinical biomarkers predict response to TPE-IVIG. (a) ‘Omics’ features and clinical baseline levels correlated 
with the biological age response to TPE. The lines connecting the features at the center indicate inter-feature correlations between clinical markers 
and other omics. (b) Clinical markers significantly correlated with the rejuvenation effects of TPE interventions. (c) ROC curve for the classification 
of responders to TPE interventions based on clinical markers. (d) Coefficients selected for the classification of responders in the TPE interventions.
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but not TPE alone, induces dramatic changes in immune cell 
composition and that many of the changes reversed are char-
acteristic of immunosenescence. For example, CD4 and CD8 
naïve T cells decrease significantly with age, contributing to 
a reduced ability of the immune system and increased suscep-
tibility to infections, increasing upon TPE + IVIG treatment. 
In particular, the strongest cell type change accompanying 
biological age rejuvenation was an increase in the percentage 
of CD4 and CD8 stem cell memory cells (SMC), a rare subset 
of T cells with self-renewing and pluripotent properties (stem 
cell-like) that also retain immunologic memory (Gattinoni 
et  al.  2017). Interestingly, these cells display a strong age-
related decrease (Heikkilä et al. 2022) and are negatively cor-
related with disease severity in infections (Vigano et al. 2015; 
Ribeiro et  al.  2014; Mateus et  al.  2015), suggesting that the 
increase upon TPE + IVIG therapy might induce immunolog-
ical rejuvenation. Given that these cell type changes are not 
observed in the TPE treatment, it is plausible that these effects 
are solely due to IVIG supplementation. However, it is possi-
ble that the supportive effects of IVIG in immunosenescence 
(Eränkö et al. 2018) synergize or enhance the rejuvenation ef-
fects of TPE. Thus, further experiments measuring BA and 
cell type composition changes associated with IVIG therapy 
are needed to disentangle these effects. At the proteomics 
level, we found that the increase in CD4 and CD8 sub-cell 
types associated with BA rejuvenation was strongly correlated 
with an increase in the abundance of proteins involved in 
host defense through complement activation (C7), immune 
signaling (IL13RA1), Protein Tyrosine Phosphatase Receptor 
Type C (PTPRC) and Immunoglobulin Kappa Variable 3D-
11 (IGKV3D-11). These findings support the hypothesis that 
TPE + IVIG therapy reverses not only features of immunose-
nescence but also promotes a more resilient immune response 
by enhancing host defense mechanisms.

Finally, our study also shows that baseline clinical testing can 
help to stratify patients for improved treatment efficacy. Here, 
whereas all subjects in this study were generally healthy and 
had laboratory values within the normal range, individuals 
with levels indicative of poorer health status, such as high blood 
glucose and lower circulating calcium, may benefit more from 
TPE + IVIG treatment. This is consistent with observations that 
anti-aging interventions have been shown to benefit unhealthy 
individuals the most (Dioum et al. 2022). This finding suggests 
that pre-treatment clinical assessment may help in identifying 
personalized treatments more likely to induce biological age re-
juvenation and that TPE + IVIG therapy has longer-term posi-
tive therapy outcomes that might be particularly beneficial in 
individuals with suboptimal health.

4   |   Methods

4.1   |   Participants

The CONSORT diagram for enrollment in the trial is given in 
Figure 1. This “not applicable” phased clinical trial was a small 
single-site randomized placebo-controlled trial with the aim of 
measuring the safety of long term TPE and the effects on bio-
markers and epigenetic biological clocks in healthy older in-
dividuals. As this was a feasibility trial primarily designed to 

assess biological signal, no formal power calculation was per-
formed, and the sample size was not determined to detect statis-
tically significant clinical outcomes. The number of individuals 
was chosen based on the safety profile evaluation in the primary 
objective. Eligible patients were men and women over 50 years 
of age, with the exception of one woman in her 40s, who had no 
known chronic clinical conditions. Exclusion criteria included 
poor peripheral vascular access, diagnosis of active malignancy 
or active infection, late-stage Alzheimer's disease, symptomatic 
coronary artery disease, congestive heart failure, restrictive 
pulmonary disease, asthma, taking growth hormones, stem 
cells, stem cell products, having a psychiatric disorder or tak-
ing anti-aging supplements, except for one patient (A4) who 
was taking rapamycin. A subset of patients had clinical blood 
tests completed at Quest Labs (Bay Area, CA) or Life Extension 
Foundation Labs (Fort Lauderdale, FL) prior to the start of the 
trial. The study protocol (NCT06534450) was approved by the 
Diagnostics Institutional Review Board (Cummaquid, MA). All 
participants provided written informed consent.

4.2   |   Treatment Assignment

Randomization was carried out based on the first-come first-
served principle by Global Apheresis. Among the suitable can-
didates, those that completed their initial lab tests and were 
eligible to participate were scheduled for their treatments in 
the order that they applied. The shorter duration testing groups 
(biweekly TPE groups with and without IVIG) were filled, fol-
lowed by longer duration testing groups (monthly TPE or pla-
cebo group). Patients, caregivers, and raters were blinded.

4.3   |   Study Design and Intervention

TPE was performed using a centrifugal blood separator (Spectra 
Optia, Lakewood, CO) as an outpatient procedure by Global 
Apheresis in California. During each procedure, one plasma vol-
ume was removed and replaced with 5% albumin. The patients 
in the TPE-IVIG group received 2 g of IVIG immediately after 
the TPE procedure. Enrolled patients were randomly allocated 
to four groups (in a 1:1:1:1 scheme): three TPE treatment groups 
and one control group that underwent a simulated TPE treat-
ment through a noninvasive procedure (sham) that mimicked 
TPE but without any actual fluid replacement, with the patient 
receiving approximately 250 cc of normal saline. The three TPE 
groups included a twice-a-week treatment once per month, a 
twice-a-week treatment once per month with IVIG added, and 
a once-a-week treatment once per month. Samples were taken 
before the first, fourth, and sixth TPE treatments. From a total 
of 240 TPE procedures, only 1 (0.42%) mild allergic reaction to 
albumin was observed as an adverse event for participants that 
completed the intervention. All samples collected at the single 
study site were processed and sent for analysis (see each analysis 
below).

Subjects in the Sham group had a peripheral vein IV inserted 
in each arm, similar to the actual treatment subjects, but with 
only normal saline IV fluid. Dark curtains were used to hide 
the apheresis device and the pumps from the participants' field 
of view. The apheresis device was turned on and ran using a 
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container filled with water, with both the access and the return 
lines submerged in the container to simulate blood flow through 
the machine. The device was programmed using the patient's in-
formation (height, weight, etc.) and a rinseback procedure was 
done to maintain the perception that the actual TPE procedure 
was finished.

4.4   |   Primary and Secondary Outcomes

The primary objective is to assure the safety of long-term TPE 
and its effects on biomarkers and epigenetic biologic clocks. 
Given the short duration of the study, functional, cognitive, or 
symptomatic outcomes were not assessed as predefined end-
points. Secondary objectives include determining which TPE 
treatment group is optimal and determining whether epigenetic 
changes occur after TPE.

4.5   |   Statistical Analysis

Briefly, changes in feature levels in each omics were calculated 
for time points 2 or 3 versus 1 and correlated against the age 
acceleration difference at time points 2 and 3. We only consid-
ered features measured in more than 3 samples. Correlations 
were transformed into z-scores using Fisher transformation 
(May and Looney  2020) using custom scripts and compared 
against zero and sham using a t-test. p values were adjusted for 
multiple tests in each omics using the Benjamini–Hochberg 
method (Benjamini and Hochberg 1995). Features with FDR 
< 0.01 against zero and sham were considered statistically 
significant. In the case of the comparison against baseline 
levels of clinical and omics markers, Wilcoxon exact tests 
(Hothorn et  al.  2022) and permuted Spearman correlation 
tests (Garren 2017) were used to evaluate changes after treat-
ment to the epigenetic biological clocks and other measured 
clinical and biological features.

4.6   |   Epigenomics

DNA methylation was evaluated using TruAge (developed by 
TruDiagnostic Inc., Lexington, KY). Peripheral whole blood 
samples were obtained and then mixed with a lysis buffer to pre-
serve the cells. DNA extraction was performed, and 500 ng of 
DNA was subjected to bisulfite conversion using the EZ DNA 
Methylation Kit from Zymo Research, following the manufac-
turer's protocol. The bisulfite-converted DNA samples were 
randomly allocated to designated Illumina Infinium EPIC850k 
Beadchip wells. The samples were amplified, hybridized onto 
the array, and subsequently stained. After washing steps, the 
variety was imaged using the Illumina iScan SQ instrument to 
capture raw image intensities, enabling further analysis. Raw 
IDAT files were processed using the minfi pipeline (Aryee 
et al. 2014). Low-quality samples were detected using ENMix by 
examining the variance of internal controls and flagging those 
with values more than 3 standard deviations from the mean con-
trol probe value (Xu et  al.  2021). However, no outlier samples 
were found, so all samples were included in the analysis. Single-
sample Noob (ssNoob) normalization was used in order to con-
sistently normalize the samples across the multiple array types. 

The algorithms analyzed by TruAge include first- (Horvath and 
Hannum) and second- (phenoAge, systemsAge, OMICAge, and 
GrimAge) generation epigenetic clocks. Epigenetic age accelera-
tion (EAA) of the first and second generation clocks was calcu-
lated as the residual of each clock regressed upon chronological 
age. To account for any perceived batch effects, the first three 
principal components calculated from the technical probes were 
calculated and used as adjustment factors when calculating 
the EAA.

Using the epigenetic age acceleration (EAA) calculated (see 
Methods—Epigenomics) we calculated the age acceleration dif-
ference as:

The mean age acceleration difference across individuals was 
calculated for each of the 35 different epigenetic clocks in each 
group. The average age acceleration difference across epigenetic 
clocks was compared between treatment groups and sham using 
the Wilcoxon test.

4.7   |   Proteomics

All water, methanol, acetonitrile, formic acid, and trifluoracetic 
acid used were LC/MS grade. Perchloric acid (70%) was pur-
chased from Sigma Aldrich (311421-50ML). Sequencing grade 
modified trypsin was obtained from Promega (V511B). Indexed 
retention time standards (iRT peptides) were purchased from 
Biognosys. HLB columns (1 cc 10 mg) were purchased from 
Waters (186000383).

Plasma samples were thawed on ice, and two 125 μL aliquots 
per sample were transferred to 1.5 mL tubes. Samples were di-
luted 10-fold with water and mixed with 70% perchloric acid 
to a final concentration of 3.5% (Winzler and Devor  1948; 
Zougman and Wiśniewski  2006; Viode et  al.  2023). Samples 
were incubated at –20°C for 15 min and subsequently cen-
trifuged at 3200 ×g for 60 min at 4°C. The supernatant was 
transferred to new tubes and acidified with 1% trifluoracetic 
acid. Perchloric acid was removed using HLB columns (10 mg, 
Waters). Columns were conditioned with 800 μL methanol and 
washed with 1600 μL of 0.1% trifluoracetic acid (TFA). The 
acidified supernatant was loaded onto the column, washed 
with 2400 μL of 0.1% TFA, and proteins were eluted with 
800 μL of 0.1% TFA in 90% acetonitrile. Eluates were dried 
using a speed-vac and resuspended in 50 μL of 0.5% sodium 
dodecyl sulfate in 100 mM triethylammonium bicarbonate 
(TEAB).

Proteins were denatured with 10% SDS at 90°C for 10 min, 
cooled to room temperature, and pH adjusted to ~7 using 1 M 
TEAB. Proteins were reduced with 250 mM dithiothreitol at 
56°C for 10 min, alkylated with 250 mM iodoacetamide in 
the dark for 30 min, and acidified with 12% phosphoric acid. 
Proteins were trapped and digested on S-Trap mini spin col-
umns according to the manufacturer's instructions. Briefly, 
reduced and alkylated proteins were diluted with S-Trap 
buffer, loaded onto the column, and digested with 4 μg tryp-
sin in 50 mM TEAB in two stages—1 h at 47°C followed by 

Age acceleration difference at time point x = EAA (time point x) − EAA (time point 1).
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an additional 4 μg trypsin and overnight incubation at 37°C. 
Peptides were eluted sequentially with 50 mM TEAB, 0.5% 
formic acid, and 0.5% formic acid in 50% acetonitrile. Eluates 
were pooled, dried using a speed-vac, and resuspended in 
1% formic acid. Peptides were desalted using HLB columns 
(10 mg, Waters). Columns were conditioned with 0.2% formic 
acid in 50% acetonitrile and washed with 0.2% formic acid. 
Samples were loaded, washed with 0.2% formic acid, and 
eluted with 0.2% formic acid in 50% acetonitrile. Eluates were 
dried using a speed-vac and resuspended in 100 μL 0.2% for-
mic acid. Samples were stored at −20°C until analysis. Prior 
to LC–MS/MS analysis, peptides were diluted 1:1 with 0.2% 
formic acid and spiked with 0.5 μL of iRT peptides (Biognosys) 
(Escher et al. 2012).

Reverse-phase HPLC-MS/MS data was acquired using a 
Waters M-Class HPLC (Waters, Massachusetts, MA) con-
nected to a ZenoTOF 7600 (SCIEX, Redwood City, CA) with 
an OptiFlow Turbo V Ion Source (SCIEX) equipped with a 
microelectrode (Burton et al. 2024). The chromatographic sol-
vent system consisted of 0.1% formic acid in water (solvent A) 
and 99.9% acetonitrile, 0.1% formic acid in water (solvent B). 
Digested peptides (4 μL) were loaded onto a Luna Micro C18 
trap column (20 × 0.30 mm, 5 μm particle size; Phenomenex, 
Torrance, CA) over a period of 2 min at a flow rate of 10 μL/
min using 100% solvent A. Peptides were eluted onto a Kinetex 
XB-C18 analytical column (15 × 0.30 mm, 2.6 μm particle size; 
Phenomenex) at a flow rate of 5 μL/min using a 120 min mi-
croflow gradient (as described below), with each gradient 
ranging from 5% to 32% solvent B. Briefly, 4 μL of digested 
peptides were loaded at 5% B and separated using a 120 min 
linear gradient from 5% to 32% B, followed by an increase to 
80% B for 1 min, a hold at 80% B for 2 min, a decrease to 5% B 
for 1 min, and a hold at 5% B for 6 min. The total HPLC acqui-
sition time was 130 min. The following MS parameters were 
used for all acquisitions: ion source gas 1 at 10 psi, ion source 
gas 2 at 25 psi, curtain gas at 30 psi, CAD gas at 7 psi, source 
temperature at 200°C, column temperature at 30°C, polarity 
set to positive, and spray voltage at 5000 V.

All human samples were acquired in data-independent acquisi-
tion mode (DIA) analysis with two technical replicates for each 
biological sample replicate (Gillet et al. 2012; Collins et al. 2017; 
Schilling et  al.  2017). Briefly, the DIA-MS method on the 
ZenoTOF 7600 system is comprised of a survey MS1 scan (mass 
range: 395–1005 m/z), with an accumulation time of 100 ms, a 
declustering potential of 80 V, and a collision energy of 10 V. MS2 
scans were acquired using 80 variable width windows across 
the precursor ion mass range (399.5–1000.5 m/z), with an MS2 
accumulation time of 25 ms, dynamic collision energy enabled, 
charge state 2 selected, and Zeno pulsing enabled (total cycle 
time 2.5 s).

All data files were processed with Spectronaut v16 (version 
16.0.220524.5300; Biognosys) performing a direct DIA search 
using the UniProt Homo sapiens reference proteome with 
20,423 entries, accessed on 06/30/2023. Dynamic data ex-
traction parameters and precision iRT calibration with local 
non-linear regression were used. Trypsin/P was specified as 
the digestion enzyme, allowing for specific cleavages and up 
to two missed cleavages. Methionine oxidation and protein 

N-terminus acetylation were set as dynamic modifications, 
while carbamidomethylation of cysteine was set as a static 
modification. Protein group identification (grouping for pro-
tein isomers) required at least two unique peptides and was 
performed using a 1% q-value cutoff for both the precursor 
ion and protein level. Protein quantification was based on 
the peak areas of extracted ion chromatograms (XICs) of 3–6 
MS2 fragment ions, specifically b- and y-ions, with automatic 
normalization and 1% q-value data filtering applied. Relative 
protein abundance changes were compared using the Storey 
method with paired t-tests and p values corrected for multiple 
testing using group wise testing corrections (Burger 2018).

4.8   |   Glycomics

Glycan data was derived as described previously (Rapčan 
et al.  2024). For the analytical precision analysis, AMC, and 
long-term variability, the IgG isolation, IgG N-glycan release, 
and labeling were performed using a Genos-Glycanage IgG 
glycome profiling kit (Genos, Osijek, Croatia) and subsequent 
capillary gel electrophoresis with laser-induced fluorescence 
(CGE-LIF) analysis was adapted from previously published 
protocols (Pučić et  al.  2011; Hanić et  al.  2019). The process 
of extracting IgG involved diluting 25 μL of subject plasma 
samples and three distinct plasma standards in quadruplicate, 
serving as technical replicates of a known, previously analyzed 
glycome. This dilution was carried out using a 1:7 ratio with 
a 1 × PBS buffer, which was prepared in-house. Additionally, 
blank samples containing ultrapure water, without any ana-
lyte, were included to monitor and control for potential cross-
contamination. The diluted samples were resuspended and 
filtered through a wwPTFE filter plate with 0.45-μm pore size 
(Pall corporation, New York, NY, USA) using a vacuum man-
ifold and pump (Pall corporation, New York, NY, USA). The 
filtered samples were transferred to a CIM r-Protein G LLD 
0.05 mL monolithic 96-well plate (Sartorius BIA Separations, 
Ajdovščina, Slovenia), where they underwent binding and 
subsequent washing steps with phosphate-buffered saline 
(1 × PBS) buffer (0.25 M NaCl, increased ionic strength, pre-
pared in-house). Elution of the bound IgG was achieved by 
employing 0.1 M formic acid neutralized with ammonium 
bicarbonate buffer (Sigma-Aldrich, St. Louis, MO, USA). The 
eluted IgG fraction (20 μL) was dried and prepared for the sub-
sequent steps in the protocol.

The dried IgG samples were consecutively treated with 
1.66 × PBS, 0.5% sodium dodecyl sulfate (SDS) and 2% Igepal 
(Sigma-Aldrich, St. Louis, MO, USA/Invitrogen Thermo Fisher 
Scientific, Carlsbad, CA, USA) to denature the IgG, followed 
by incubation with 1.2 U of the enzyme PNGase F (Promega, 
Madison, WI, USA) at 37°C for 3 h to release its N-glycans. The 
released glycans were then labeled by mixing APTS (8-aminop
yrene-1,3,6-trisulfonic acid) (Synchem, Felsberg, Germany) flu-
orescent dye with the reducing agent 2-picoline borane (Sigma-
Aldrich, St. Louis, MO, USA) and subjected to a 16-h incubation 
at 37°C.

After incubation, the labeling reaction was halted by the ad-
dition of 80% acetonitrile (ACN, Carlo Erba, Milan, Italy). The 
clean-up of the released fluorescently labeled IgG N-glycans 
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was conducted using solid-phase extraction utilizing Bio-Gel 
P-10 as a hydrophilic stationary phase. The entire sample vol-
ume was transferred to the filter plate containing the Bio-Gel 
P-10. The excess label and reducing agent were removed by 
five washes with 80% ACN/100 mM triethylamine (Sigma-
Aldrich, St. Louis, MO, USA), followed by three washes with 
80% ACN. Finally, APTS labeled IgG N-glycans were eluted in 
ultra-pure water.

For CGE-LIF analysis, 3 μL of purified IgG N-glycans com-
bined with 7 μL of Hi-Di Formamide were analyzed using 
an ABI3500 Genetic Analyzer (Thermo Fisher Scientific, 
Waltham, MA, USA) equipped with a 50-cm long 8-capillary 
array filled with POP-7 polymer as a separation matrix. Run 
parameters were set as follows: run time 1000 s, injection time 
12 s, injection voltage 15 kV, run voltage 15 kV, and oven tem-
perature 60°C. The resulting electropherograms were man-
ually integrated into 27 glycan peaks using the Empower 3 
software (Waters, Milford, MA, USA). The amount of glycan 
structures in a peak was expressed as a percentage of the total 
integrated area (total area normalization). In addition, six 
derived glycan traits were calculated for glycans with shared 
structural features (Trbojević Akmačić et  al.  2015; Gornik 
et al. 2009).

4.9   |   Metabolomics and Lipidomics

Targeted metabolomics was performed on plasma samples 
utilizing the Biocrates AbsoluteIDQ p400 HR kit. Prior to 
analysis, a system suitability test and instrument calibra-
tion were performed with the QExactive mass spectrometer 
(Thermo Scientific). The experimental procedure involved 
processing plasma samples, blanks, calibration standards (7-
point), and quality controls according to the manufacturer's 
recommendations.

Specifically, 10 μL of plasma was added to a pre-loaded filter 
plate containing internal standards and dried using ultra-
pure nitrogen. Subsequent derivatization with 5% phenyliso-
thiocyanate in pyridine, ethanol, and water (in a 1:1:1 ratio), 
followed by extraction with 5 mM ammonium acetate in 
methanol, yielded extracts that were collected into a 96-deep 
well plate via centrifugation. Mass spectrometric analysis was 
conducted using the Thermo QExactive mass spectrometer in 
positive ionization mode. Chromatographic separation uti-
lized a proprietary Biocrates column, employing 0.2% formic 
acid in water as buffer A and 0.2% formic acid in acetonitrile 
as buffer B.

For the analysis of lipids, acylcarnitines, and hexoses, flow in-
jection analysis (FIA) was employed without a column, utilizing 
the Biocrates FIA additive mobile phase. Data processing and 
lipid quantification were performed using Thermo Excalibur, 
QuanBrowser, and MetIDQ software. Normalization of peak 
areas corresponding to metabolites was conducted relative to 
their respective internal standards. Target metabolite concentra-
tions were estimated linearly based on observed concentrations 
in quality control samples, and a seven-point quadratic calibra-
tion approach was implemented where applicable. All chemicals 
and solvents used were LC/MS grade.

4.10   |   Cytomics

Blood was collected into lavender-top vacutainer tubes (K-
EDTA, BD) and kept on ice until processing the same day. 
Peripheral blood mononuclear cells (PBMC) were prepared from 
the whole blood by density gradient centrifugation using Ficoll-
Paque PLUS (Cytivia) according to the package directions, fol-
lowed by lysis of residual erythrocytes with ACK buffer (Gibco). 
After washing twice in dPBS, PBMC were cryopreserved in 90% 
fetal bovine serum (FBS) and 10% DMSO and stored in liquid 
nitrogen until analysis.

Vials of frozen PBMC (~2 million) were thawed rapidly by swirl-
ing in a 37°C water bath and immediately transferred to 15 mL 
conical tubes with 10 mL of pre-warmed RPMI medium with 10% 
FBS, then pelleted for 5 min at 300 g in a benchtop TC centrifuge. 
After removal of the supernatant, the cells were resuspended in 
4 mL of warmed RPMI/10% FBS and allowed to recover in a TC 
incubator for 3 h prior to staining. After recovery, the cells were 
divided equally for analysis with the SPiDERGal and intracellu-
lar reagent panels. For the SPiDERGal workflow, the cells were 
left in medium and treated with 1 μM Bafilomycin A1 (Abcam) 
for 1 h, followed by 667 nM of SPiDERGal (ThermoFisher) for 
one additional hour, while the cells for the IC panel were pel-
leted and kept on ice for staining. For both panels, the cells were 
resuspended in 200 μL of dPBS in V-bottom plates and incubated 
for 20 min on ice with 1X Live/Dead Blue (ThermoFisher) plus 
5 μg/mL of human IgG (Sigma). Surface marker-specific anti-
bodies plus FBS to 2% v/v were then added (as specified in the 
attached table), and the cells were incubated on ice in the dark 
for 1 h, then washed once in PBS/2% FBS. For the SPiDER panel, 
the cells were then taken up in 150 μL of PBS/2% FBS and ac-
quired. For the IC panel, the cells were taken up in 150 μL of 
FOXP3 Fix/perm buffer (ThermoFisher) and incubated on 
ice for 20 min, pelleted, washed once with FOXP3 Perm-wash 
buffer (ThermoFisher), and then stained with the IC marker-
specific antibodies in Perm-wash buffer as specified in the 
attached table. They were then pelleted, washed once in Perm-
wash buffer, and resuspended in PBS/2% FBS for acquisition.

The stained PBMC were acquired on a 5-laser Cytek Aurora 
spectral flow cytometer (Cytek), and the raw data were spec-
trally unmixed using the SpectroFlo software package (Cytek). 
Subsequent correction of spectral compensation and manual 
gating to identify populations were performed using FlowJo 
(software (BD)), and population frequencies (as % of parent pop 
and percent of live leukocytes) and numbers were tabulated for 
subsequent bioinformatic analysis.

4.11   |   iAge

Samples were analyzed using a Luminex LX-200 instrument 
(Luminex Corp., Austin, TX, USA) to determine the levels of 
Inflammatory Age markers using Edifice's proprietary assay, 
composed of 5 core proteins: CCL11, IFN-γ, GRO-α, CXCL9, 
and TRAIL. Raw mean fluorescent intensity (MFI) values for 
each plate below the 5th percentile were set to the 5th percen-
tile of the plate, and those above the 95th percentile were set to 
the 95th percentile of the plate. These values were normalized 
using control serum samples from 11 individuals spanning a 
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diverse range of ages (23–83 years old) and both sexes. iAge was 
derived from all study participants using the Edifice proprietary 
machine learning algorithms using the normalized MFI values. 
The percentile is calculated for each individual from the empiri-
cal cumulative distribution of iAge in the study population from 
the same decade as the individual.

4.12   |   Bioinformatic Analysis

Circular and rectangular heatmaps were generated using the 
package circlize and ComplexHeatmap (Aradillas et al.  2015). 
Gene ontology enrichment analysis was performed using the 
function enrichGO implemented in the package clusterProfiler 
(Wu et al. 2021). Only GO biological process terms with a set size 
between 50 and 500 were analyzed. Enrichment results were 
plotted using the package CellPlot (dieterich-lab/CellPlot 2024). 
To identify genes associated with each of the 12 hallmarks of 
aging, we used a corpus of 36 million abstracts from PubMed 
(https://​huggi​ngface.​co/​datas​ets/​ncbi/​pubmed). First, we iden-
tified 71,129 abstracts including the word “aging” or “ageing” 
in the title or abstract. Then, we used large language models 
(GPT-4o mini) to analyze each abstract using the following 
query: “Your task is to identify genes associated with the hall-
marks of aging from the following scientific abstract. For each 
gene mentioned in the abstract, annotate it with the correspond-
ing hallmark of aging (genomic instability, telomere attrition, 
epigenetic alterations, loss of proteostasis, deregulated nutrient 
sensing, mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion, altered intercellular communication, disabled 
autophagy, chronic inflammation, dysbiosis)”. To perform en-
richment analysis using these gene sets, we ranked the genes 
in the query signature by −log10(p value) and then performed 
a one-tailed gene set enrichment analysis using the package 
fgsea (Korotkevich et al. 2021). To build the classification mod-
els we only considered samples that measured at least 50% of 
the clinical markers and markers that were measured in at least 
50% of the samples. Missing values were imputed using the R 
package impute. Each individual was classified into responder 
or non-responder for each epigenetic clock based on the age ac-
celeration difference (e.g., responder: age acceleration difference 
< 0, non-responder: age acceleration difference > 0). We per-
formed Elastic Net logistic regression on the clinical data using 
10-fold cross validation and we evaluated shrinkage parameter 
(lambda) of classification models using area under the curve. 
Intrinsic capacity was calculated from methylation data as pre-
viously described (Fuentealba et  al.  2024). Intrinsic capacity 
acceleration was calculated the same as other epigenetic clocks 
(see Methods above) and multiplied by −100 to scale the value to 
a similar scale as other epigenetic clocks based on age.
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